
BAPC 2023 Preliminaries
Preliminaries for the

2023 Benelux Algorithm Programming Contest

Problems
A Anti-Tetris
B Better Dice
C Cheap Flying
D Determining Duos
E Exceeding Limits
F Finding Forks
G Gathering Search Results
H Hacky Ordering
I Idle Terminal
J Just a Joystick
K King’s Keep
L Losing Leaves
M Monorail

Copyright © 2023 by The BAPC 2023 jury. This work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.
https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/

Problem A: Anti-Tetris 3

A Anti-Tetris Time limit: 1s

The perfect example of a
non-perfect Tetris grid.

CC BY-NC 2.0 by
Richard Buitron on Flickr

In the game Tetris, the goal is to position blocks falling down a grid as
well as possible. Before the block falls down, the player can shift the
block to the left and right, and rotate it in steps of 90 degrees. Then,
the block falls down vertically until it hits another block. Completely
filling a row removes this row from the grid, clearing up space for more
falling blocks.

You have played this game one too many times, and to shake things up,
you decide to play Anti-Tetris: instead of controlling the positioning
of the blocks falling down, the goal is to design a Tetris grid that will
perfectly fit a given block. That is, a grid such that after optimally
positioning the new block, all rows of the grid are cleared and no filled
cells remain.

As an example, consider the first sample case, shown in Figure A.1. The
input block can be rotated clockwise 90 degrees and shifted left to make it fit exactly and
clear all rows of the grid once it touches down.

Figure A.1: Visualization of the first sample case. The falling block (the input, light yellow) perfectly
fits in the Tetris grid (the output, other colours).

Input

The input consists of:

• One line with two integers h and w (1 ≤ h, w ≤ 100), the height and width of the Tetris
block that is about to enter the grid.

• h lines with w characters, each character being either ‘#’ or ‘.’, representing a filled or
unfilled cell of the block, respectively.

The input block is a single orthogonally1 connected component and exactly fits in the w × h

bounding box, i.e. the first and last row and column contain at least one ‘#’.
1Two cells are orthogonal neighbours if and only if they are horizontal or vertical neighbours.

https://www.flickr.com/photos/35973370@N03/3352142819

Problem A: Anti-Tetris 4

Output

If there exists no Tetris grid that perfectly fits the input block, output “impossible”. Else,
output a grid such that placing the the input block optimally removes all rows, in the following
format:

• Two integers h, w (1 ≤ h, w ≤ 1000), the height and width of the Tetris grid.

• h strings with w characters, each character being either ‘#’ or ‘.’, representing a filled
or unfilled cell in the Tetris grid, respectively.

A row in the output grid may not be completely filled before the block is added, since such
a row would already have been removed by the game.

Note that it is not required to print empty rows at the top of the output grid, since the block
can be rotated and shifted to the left and right before it falls down.

If there are multiple valid solutions, you may output any one of them.

Sample Input 1 Sample Output 1
2 3
#..
###

3 8
##..####
##.#####
##.#####

Sample Input 2 Sample Output 2
2 3
.##
##.

impossible

Sample Input 3 Sample Output 3
3 3
#..
##.
###

5 7
.......
.......
##...##
###..##
####.##

Problem B: Better Dice 5

B Better Dice Time limit: 1s

A twenty-sided die with a special set
of numbers on the faces. CC BY 4.0

by hamstermann on Thingiverse

The latest Table-Top Role Playing Game is out now: Better
Dice. Unlike all other TTRPGs, this one is all about dice. In
fact, it is all about the better die: decisions are made, friend-
ships gained and lost, fights fought, battles won, all based on
who has the better die.

This game uses special n-sided dice where each of the n faces
has the same probability of being rolled. Moreover, each die
has its own special set of n numbers on the faces.

While playing Better Dice you ended up in a very precarious
situation where you must absolutely have a better die than your
opponent, that is, you must roll higher than your opponent.
Given both your die and your opponent’s die, decide who is
more likely to roll a higher number.

Input

The input consists of:

• One line with an integer n (1 ≤ n ≤ 1000), the number of sides on each die.

• Two lines, each with n integers d (1 ≤ d ≤ 109), the values on one of the dice.

Output

Output “first” if the first die is more likely to roll a higher number than the second die.
Output “second” if the second die is more likely to roll a higher number than the first die.
Output “tie” if they are both equally likely to come up higher than the other.

Sample Input 1 Sample Output 1
2
4 6
5 5

tie

Sample Input 2 Sample Output 2
6
1 2 3 4 5 6
7 6 5 4 3 2

second

Sample Input 3 Sample Output 3
3
2 2 2
1 1 8

first

https://www.thingiverse.com/thing:4819695

Problem C: Cheap Flying 6

C Cheap Flying Time limit: 3s

The unpredictability of the
jury members would be even

worse, if they would all fly
from their own universities,

instead of from the
headquarters of BAPC.

CC BY-SA 4.0 by Shaund on
Wikimedia Commons, modified

You are part of the organization of BAPC, and you are in charge of
flight operations. From time to time, the jury members of BAPC
need to fly from the remote headquarters of BAPC to the current
location of the operation that BAPC performs, which is currently
Amsterdam. Luckily there is an airline that serves the route from
BAPC’s headquarters to Amsterdam. The BAPC organization has
a contract with that airline that ensures that you pay the same fixed
amount for each flight. If your judges need to fly the route often,
these costs can add up and become really high. To avoid this, you
figured out that you could also simply buy your own aircraft. Once
you own your own aircraft, you can either fly with this new shiny
equipment which costs some fixed price per flight for fuel and the
like, or alternatively you could still fly with the airline.

The problem now is that you have no idea what the judges are
doing! They are so incredibly unpredictable and always only do
random and very complicated things. So random, that you cannot
decide beforehand what you should do. So you need to make your decision on the fly, even
though this may prevent you from making the cost-optimal decision up-front. Still, you do
not want to be too loose with your spending: you set yourself the constraint that you spend
at most twice as much as you would have if you exactly knew how many flights the judges
would make in advance.

Interaction

This is an interactive problem. Your submission will be run against an interactor, which
reads from the standard output of your submission and writes to the standard input of your
submission. This interaction needs to follow a specific protocol:

The interactor first sends one line with three integers a, b, and c (0 ≤ a, b, c ≤ 106), the cost
of one flight with the airline, the one-time cost of buying an aircraft, and the cost for each
flight using your own aircraft.

Then, the interactor sends either the input “flight” or the input “end”. For every input
“flight”, you need to provide either “airline” if you want fly with the airline for cost a,
“buy” to buy an aircraft and use it for a single flight for cost b + c, or “self” if you want
to use your own aircraft for cost c. You can only use the last option if you have bought an
aircraft before, and you can only buy an aircraft once.

The interaction ends when you receive the input “end”, which is after at most 104 rounds.

The interactor is adaptive, and may send fewer or more flights based on your output.

Make sure you flush the buffer after each write.

A testing tool is provided to help you develop your solution.

https://commons.wikimedia.org/wiki/File:Benelux-map.svg

Problem C: Cheap Flying 7

Read Sample Interaction 1 Write
5 50 2

flight

airline

flight

airline

flight

airline

end

Read Sample Interaction 2 Write
5 8 1

flight

buy

flight

self

end

Problem D: Determining Duos 8

D Determining Duos Time limit: 3s

BAPC 2023 Preliminaries
Preliminaries for the

2023 Benelux Algorithm Programming Contest

Problems
A Anti-Tetris
B Better Dice
C Cheap Flying
D Determining Duos
E Exceeding Limits
F Finding Forks
G Gathering Search Results
H Hacky Ordering
I Idle Terminal
J Just a Joystick
K King’s Keep
L Losing Leaves
M Monorail

Typical example of a programming
contest that you are coaching your

students for.

As a coach of 2n students, you are making n duos (teams of
two) for the upcoming programming contest season. After the
duos have been created, they will participate in r contests, each
about a different topic: DP, graphs, geometry, etc. You already
ran a set of internal selection contests to rank the students, and
from this you were able to rank all the students with a unique
integer score between 1 and 2n inclusive for each topic, with 2n

being the best.

When a duo participates in a contest on a given topic, their
score will be the maximum of the two scores of the two students
for this topic.

You think it would be amazing if summed up over all duos and
contests, your students could achieve a total score of at least
1
2rn(3n + 1). Is this possible?

Input

The input consists of:

• One line with two integers n and r (1 ≤ n ≤ 4000, 1 ≤ r ≤ 100), the number of duos
and the number of topics.

• r lines, the ith of which contains 2n integers xi,1, . . . , xi,2n (1 ≤ xi,j ≤ 2n for each i, j)
where xi,j is the score of student j on topic i.

Output

If it is possible to make duos such that the total score over all duos and contests is at least
1
2rn(3n + 1), output “possible”. Otherwise, output “impossible”.

Sample Input 1 Sample Output 1
2 2
1 2 3 4
1 2 3 4

possible

Sample Input 2 Sample Output 2
2 2
1 2 3 4
4 1 2 3

possible

Problem D: Determining Duos 9

Sample Input 3 Sample Output 3
2 3
1 2 3 4
4 1 2 3
1 3 2 4

impossible

Problem E: Exceeding Limits 10

E Exceeding Limits Time limit: 8s

Tim’s arch-nemesis:
the trajectcontrole.

CC BY-NC-SA 2.0 by
DutchRoadMovies on Flickr

Tim needs to reach the Binary Analog Probing Conference (BAPC)
on time, but he is running late. He is not sure if he can even make it
on time without exceeding the speed limit! He does not like speed-
ing, so he would like to minimize the amount that he needs to speed
and plans his route accordingly. If he decides to speed by x km/h,
he will exceed the speed limit everywhere by exactly x km/h.

Help Tim find the minimal amount that he needs to speed by to get
to the BAPC in time.

As an example, consider the first sample case. Without speeding,
Tim will take 400

40 + 300
20 = 25 hours to drive from intersection 1,

via intersection 3, to intersection 4. In order to arrive in time,
he will need to exceed the speed limit by 10 km/h, in which case his driving time will be

400
40+10 + 300

20+10 = 18 hours, following the same route.

Input

The input consists of:

• One line with three integers n, m, and t (2 ≤ n ≤ 104, 1 ≤ m ≤ 105, 1 ≤ t ≤ 105), the
number of intersections, the number of roads, and the time within which Tim needs to
reach his destination.

• m lines, each with four integers a, b, ℓ, and v (1 ≤ a, b ≤ n, a ̸= b, 1 ≤ ℓ, v ≤ 105).
Each line indicates a bidirectional road between intersections a and b with length ℓ in
km and speed limit v in km/h.

The intersections are numbered between 1 and n, inclusive.

Tim will start at intersection 1 and drive to intersection n, which is guaranteed to be reach-
able.

Output

Output how much Tim needs to exceed the speed limit, in km/h. If Tim can reach his
destination without speeding, output 0.

Your answer should have an absolute or relative error of at most 10−6.

Sample Input 1 Sample Output 1
4 4 18
1 2 800 40
1 3 400 40
4 2 500 50
4 3 300 20

10

https://www.flickr.com/photos/138457806@N03/25798762608/

Problem E: Exceeding Limits 11

Sample Input 2 Sample Output 2
4 3 100
1 2 300 15
2 3 500 20
3 4 300 30

0

Sample Input 3 Sample Output 3
4 4 10
1 2 200 50
2 3 300 30
2 3 400 15
3 4 500 50

56.9041576

Problem F: Finding Forks 12

F Finding Forks Time limit: 1s

A small selection of the many types of
forks that you own. CC BY-SA 3.0 by

Mark Taff on Wikimedia Commons

Your cutlery drawer contains many types of forks. Each with
their own purpose, and each with its own place in the cutlery
drawer. After a nice dining party with all your friends, disaster
struck! You put all the used forks in the dishwasher, but now
you are unsure where to put back some of the forks, because at
least two places in the cutlery drawer are empty! And worse,
you do not remember which type of fork belongs where!

What is the minimum number of forks that must have been in
the dishwasher to cause this confusion?

Input

The input consists of:

• One line with an integer n (2 ≤ n ≤ 105), the number of types of forks.

• One line with n integers a (1 ≤ a ≤ 109), the number of forks of each type.

Output

Output the minimum number of forks that must have been in the dishwasher.

Sample Input 1 Sample Output 1
3
4 9 5

9

Sample Input 2
10
18 39 5 12 1000000000 54 23 11 123 31415

Sample Output 2
16

https://commons.wikimedia.org/wiki/File:Assorted_forks.jpg

Problem G: Gathering Search Results 13

G Gathering Search Results Time limit: 3s

Throwback to when you still
ranked search results manually.

CC BY-SA 2.0 by Matthew
Bernhardt on Flickr

You are making a new search engine for algorithms, called the
Benelux Algorithm Preview Collector. All the marketing has been
done, and you have plenty of investors, but there is one small prob-
lem: you have not written any code yet! As there are only five hours
left until the product launch, you decide that there is not enough
time to implement your own ranking algorithm. Instead, whenever
a user searches for an algorithm, you just forward it to the k most
popular other search engines and use their results.

Each of these k search engines gives a list of n results, ordered by
estimated relevance. Surprisingly, it turns out that for every search
term you try, the different search engines always give the same n

results, only the order differs between the search engines! You just
need to find a way to combine the k different rankings into a single
ranking.

To do this, you decide to give each possible combined ranking a cost: for each result r and
search engine s, if your combined ranking puts r at the position i, and search engine s puts
r at position j, then you incur a cost of (i − j)2. The total cost of a combined ranking is the
sum of all k · n costs computed this way.

As an example, consider the second sample case. The first search engine returns the same
result as the sample output, which has cost 0. The second search engine swaps two adjacent
results, which has cost 1 + 1 = 2. For the third search engine, the first result is moved
two positions back, and the other two are shifted one position to the front, which has cost
4 + 1 + 1 = 6. The total cost is then 0 + 2 + 6 = 8, which is the minimal possible cost over
all possible orders.

What is the order in which BAPC should output the results, such that the total cost is
minimized?

Input

The input consists of:

• One line containing two integers n and k (1 ≤ n ≤ 5000, 1 ≤ k ≤ 100), the number of
results, and the number of search engines.

• k lines, each containing n integers, denoting the results as ordered by one of the search
engines. It is guaranteed that each line contains every integer from 1 to n exactly once.

Output

Output the combined order of the results, such that the cost is minimized.

If there are multiple valid solutions, you may output any one of them.

https://www.flickr.com/photos/64500102@N05/5899970872

Problem G: Gathering Search Results 14

Sample Input 1 Sample Output 1
2 3
1 2
2 1
2 1

2 1

Sample Input 2 Sample Output 2
3 3
1 2 3
1 3 2
2 3 1

1 2 3

Sample Input 3 Sample Output 3
5 2
2 1 3 5 4
4 1 5 2 3

1 2 4 5 3

Problem H: Hacky Ordering 15

H Hacky Ordering Time limit: 2s

#include <algorithm>

import java.util.Arrays;

const sort = (names) =>

sorted(

Arrays.sort(

sort(names.begin(),

names.end())

).sort()

);

If only you were allowed
to use this universal

sorting function. . .

You have been asked to sort! Again! For the bazillionth time! Not
even numbers, but strings! Ugh! Do people still not have this in their
standard library? Why do you even need to learn this? Who even uses
a language without sort function‽

Clearly, you have not been paying attention in class for such a stupid
ubiquitous function, but now you have been asked to implement it! With-
out calling sort! But you just cannot!

But wait! You have a better approach: what if you just assume that
the list is sorted already? The order of the characters in the alphabet is arbitrary anyway. . .
So, instead of sorting the list, you want to determine whether there exists some order of the
characters of the alphabet such that the list of strings is sorted according to this order.

Note that when a string is a prefix of some longer string, the shorter string should be sorted
before the longer string.

Input

The input consists of:

• One line with an integer n (1 ≤ n ≤ 105), the number of strings.

• n lines, each with a string.

The strings only consist of English lowercase letters (a-z).
The total number of characters in the n strings is at most 105.
The strings are not necessarily distinct.

Output

If it is impossible to determine an order of the alphabet, output “impossible”.
If it is possible, output a permutation of the 26 letters of the English alphabet according to
which the strings are sorted.

If there are multiple valid solutions, you may output any one of them.

Sample Input 1 Sample Output 1
7
c
cplusplus
csharp
python
php
java
javascript

cpsyhjabdefgiklmnoqrtuvwxz

Problem H: Hacky Ordering 16

Sample Input 2 Sample Output 2
4
aa
ba
ab
bb

impossible

Sample Input 3 Sample Output 3
5
yyy
yyyy
z
xx
xx

qwertyuiopasdfghjklzxcvbnm

Sample Input 4 Sample Output 4
2
aa
a

impossible

Problem I: Idle Terminal 17

I Idle Terminal Time limit: 1s

The IT Team praying that the
migrations will complete successfully.

From r/pcmasterrace

It is migration day at the Big Administration Processing Com-
pany: the database containing all administrative documents
of all clients needs to be migrated to the latest version of the
database software. Quite some things have changed over the
past years, and this software has not been upgraded, so the
number of migration jobs is high.

The migration jobs run in parallel on the multicore server ma-
chine in a first-come-first-serve fashion: every time a core is
done running a job, it starts running the first job that has not yet started. The Idle Terminal
(IT) Team is sitting huddled around the terminal window, eagerly awaiting the dopamine
boost when another migration job completes successfully and a message is printed to the
terminal.

The IT Team starts breaking out in sweat when nothing changes on the terminal for quite
a long time. Did the connection hang? Has the server soft-locked? Did all jobs get stuck in
infinite loops?? On the other hand, some migration jobs really do have a long duration, and
it may simply be a coincidence that there are only long-running jobs active at the time. To
calm down the IT Team, you decide to compute the longest time that goes by without seeing
a new message on the terminal, starting from the moment that the first migration jobs start
running.

Input

The input consists of:

• One line with two integers n and k (1 ≤ n, k ≤ 105), the number of migration jobs and
the number of cores in the server machine.

• One line with n integers d (1 ≤ d ≤ 100), the duration of each job in the order that
they are processed.

Output

Output the longest time that goes by without seeing a new message on the terminal.

Sample Input 1 Sample Output 1
2 2
3 7

4

Sample Input 2 Sample Output 2
5 10
1 2 3 4 5

1

https://www.reddit.com/r/pcmasterrace/comments/3piyyb/it_team_before_going_on_holiday/

Problem I: Idle Terminal 18

Sample Input 3 Sample Output 3
4 1
2 10 6 4

10

Sample Input 4 Sample Output 4
6 2
3 5 8 10 4 1

6

Sample Input 5 Sample Output 5
6 3
2 4 6 6 6 6

2

Problem J: Just a Joystick 19

J Just a Joystick Time limit: 1s

A girl playing Battlezone Asteroids
Pac-Centipede. CC BY-SA 2.0 by

Sergiy Galyonkin on Flickr

You just got the high score when playing Battlezone Asteroids
Pac-Centipede on an arcade machine! On the “Game Over”
screen, you can enter your initials, one letter at a time. This
seems to be a very modern arcade machine: whereas the original
arcade machines only allowed entering three initials, this machine
allows many more. However, to select the letters, you have access
to just a joystick. For every letter, you need to move the joystick
up or down to cycle between the letters (wrapping around be-
tween ‘Z’ and ‘A’, in both directions) and move it to the right to
move to the next letter.

It appears that the initials of the previous high-score winner are
still filled in. Entering your own initials is going to take some
time, and you want to know exactly how long. How many times do you need to you move the
joystick up or down to enter your own initials, if you do so in the most efficient way?

Input

The input consists of:

• One line with an integer n (1 ≤ n ≤ 105), the number of letters available to enter your
initials.

• One line with a string of length n, the initials of the previous high-score winner.

• One line with a string of length n, the initials that you want to enter.

The strings only consist of English uppercase letters (A-Z).

Output

Output the minimum number of times you should move the joystick up or down to enter your
own initials. This does not include the number of times that you need to move the joystick
to the right.

Sample Input 1 Sample Output 1
3
RGK
MPS

22

Sample Input 2 Sample Output 2
5
ABIYZ
YZIAB

8

https://www.flickr.com/photos/22974618@N00/30641119142

Problem K: King’s Keep 20

K King’s Keep Time limit: 1s

King Carl’s keep of choice: created
with contours of a capital ‘K’.

CC BY-SA 2.0 by David Dixon on
geograph.co.uk, modified

King Carl’s kingdom contains k keeps (commonly called castles).

Coordinates of keeps are known, and King Carl considers himself
convinced that it could be convenient to choose a central keep as
King Carl’s residence.

Critically, King Carl considers that the average cost to carry
commands from King Carl’s residence to King Carl’s other keeps
should be small.

Compute the minimal average Euclidean distance2 from his resi-
dence keep to the other keeps if King Carl chooses his residence
optimally.

Input

The input consists of:

• One line with an integer k (2 ≤ k ≤ 1000), the number of keeps.

• k lines, each with two integers x and y (|x|, |y| ≤ 1000), the coordinates of the keeps.

It is guaranteed that all keeps are at distinct locations.

Output

Output the minimal possible average distance from the keep that is chosen as the king’s
residence to all other keeps.

Your answer should have an absolute or relative error of at most 10−6.

Sample Input 1 Sample Output 1
3
0 0
9 9
0 9

9

Sample Input 2 Sample Output 2
5
-3 5
6 8
1 2
5 -4
-7 -9

8.405705684

2The Euclidean distance between two points is the length of a straight line segment between these points.

https://www.geograph.org.uk/photo/6589097

Problem L: Losing Leaves 21

L Losing Leaves Time limit: 8s

Here at the Benelux Advanced Phone Company (BAPC), we are the proud owners of the
largest telephone network in the Benelux area. Unfortunately, our network has become too
large for us to manage properly. As such, we have decided to sell part of our network.

0

1

3 4

6

8

5

7

2

Figure L.1: Visualization of
the second sample input.

The network of the BAPC consists of interconnected transmis-
sion nodes. One transmission node is marked as the central
switch. All other nodes have exactly one upstream transmission
node. For each transmission node, if we follow the upstream
connections, we will finally end up at the central switch. A
node is considered a customer transmission node when it is a
leaf, i.e. when it has no downstream nodes.

When selling parts of our network, integrity must be main-
tained. That means that whenever we sell a transmission node
X, we also have to sell nodes downstream of X.

Overall, BAPC decided to sell exactly k transmission nodes.
While there may be many options to choose these k nodes, we
actually want to make our lives as easy as possible: After sell-
ing, we want to minimize the number of customer transmission
nodes in our network, while maintaining the network’s integrity.

As an example, consider the second sample case, visualized in
Figure L.1. The three striped red nodes are sold, and the two
bold green nodes are the remaining customer nodes.

Input

The input consists of:

• One line with two integers n and k (0 ≤ k < n ≤ 106), the number of transmission
nodes, and the number of nodes to sell.

• n − 1 lines, the ith of which contains one integer pi (0 ≤ pi < i) indicating that
transmission node i (1 ≤ i < n) has an outgoing connection to node pi.

The transmission nodes are numbered from 0 to n − 1, inclusive. Node 0 is always the central
switch.

Output

Output the minimum number of customer transmission nodes after selling k transmission
nodes. Note that if the central switch is the only remaining node, it also counts as a customer
node.

Problem L: Losing Leaves 22

Sample Input 1 Sample Output 1
5 2
0
0
1
1

1

Sample Input 2 Sample Output 2
9 3
0
0
1
1
1
4
5
6

2

Problem M: Monorail 23

M Monorail Time limit: 2s

A train about to enter the tunnel.
From pxfuel.com

You were just about to go on a nice long holiday to the south,
but as always, the trains are delayed. This time, a cargo train
derailed in the Gotthard Base Tunnel through the Alps, com-
pletely taking one of the two tubes out of service for several
months. Luckily, after some initial repairs, the other tube is in
service again for cargo traffic.

Since it is now only a one-track connection, multiple trains in
the same direction can closely follow each other, but trains in
opposite directions can not pass each other. This also means
that trains going north can only enter once all trains going south have exited the tunnel, and
vice versa.

Today, there are n cargo trains that want to drive through the tunnel. Each train arrives at
one of the ends at a given time, and takes exactly d minutes to drive through the tunnel at
a constant speed.

Even though this is not your responsibility, you decide to make a schedule for today’s trains.
You will decide for each train how long is has to wait at its entrance portal before it can enter
the tunnel. Your goal is to minimize the sum of waiting times at the entrance portals over
all trains.

For simplicity, you assume that trains are short compared to the length of the tunnel and can
be approximated by points travelling over a line segment.

Input

The input consists of:

• One line with an integer n and d (1 ≤ n ≤ 500, 1 ≤ d ≤ 109), the number of cargo
trains and the duration that each train needs to drive through the tunnel, in minutes.

• n lines, each containing a character s and an integer t (s ∈ {‘N’, ‘S’}, 0 ≤ t ≤ 109),
indicating whether this train starts at the north or south portal, and the number of
minutes after the start time at which this train arrives.

It is guaranteed that trains are sorted by arrival time. For trains with equal arrival time, the
trains coming from the north are listed before the trains coming from the south.

Output

Output the minimal sum of waiting times at the tunnel entrance portals over all trains, in
minutes.

https://www.pxfuel.com/en/free-photo-otaqw

Problem M: Monorail 24

Sample Input 1 Sample Output 1
3 5
N 0
S 4
N 8

3

Sample Input 2 Sample Output 2
4 10
N 5
N 10
S 10
N 15

15

Sample Input 3 Sample Output 3
4 10
S 0
N 10
N 10
S 20

0

Sample Input 4 Sample Output 4
4 10
N 0
S 5
S 5
S 5

15

	Problems
	Anti-Tetris
	Better Dice
	Cheap Flying
	Determining Duos
	Exceeding Limits
	Finding Forks
	Gathering Search Results
	Hacky Ordering
	Idle Terminal
	Just a Joystick
	King's Keep
	Losing Leaves
	Monorail

